Translation limits synthesis of an assembly-initiating coat protein of filamentous phage IKe.
نویسندگان
چکیده
Translation is shown to be downregulated sharply between genes V and VII of IKe, a filamentous bacteriophage classed with the Ff group (phages f1, M13, and fd) but having only 55% DNA sequence identity to it. Genes V and VII encode the following proteins which are used in very different amounts: pV, used to coat the large number of viral DNA molecules prior to assembly, and pVII, used to serve as a cap with pIX in 3 to 5 copies on the end of the phage particle that emerges first from Escherichia coli. The genes are immediately adjacent to each other and are represented in the same amounts on the Ff and IKe mRNAs. Ff gene VII has an initiation site that lacks detectable intrinsic activity yet through coupling is translated at a level 10-fold lower than that of upstream gene V. The experiments reported reveal that by contrast, the IKe gene VII initiation site had detectable activity but was coupled only marginally to upstream translation. The IKe gene V and VII initiation sites both showed higher activities than the Ff sites, but the drop in translation at the IKe V-VII junction was unexpectedly severe, approximately 75-fold. As a result, gene VII is translated at similarly low levels in IKe- and Ff-infected hosts, suggesting that selection to limit its expression has occurred.
منابع مشابه
The major coat protein gene of the filamentous Pseudomonas aeruginosa phage Pf3: absence of an N-terminal leader signal sequence.
From in vitro protein synthesis studies and nucleotide sequence analysis it has been deduced that, unlike the major coat proteins of the hitherto studied filamentous bacterial viruses Ff (M13, fd and f1), IKe and Pf1, the major coat protein of the filamentous Pseudomonas aeruginosa virus Pf3 is not synthesized as a precursor containing a leader signal polypeptide at its N-terminal end. From the...
متن کاملImmunization of Sheep with Phage Mimotopes against Dermatophilosis
Random peptide libraries (RPL) displayed on the surface of filamentous bacteriophages have been extensively used as a tool to map epitopes or to identify antigenic mimics (mimotpoes) of disease-specific monoclonal antibodies or polyclonal sera. These RPL are engineered by the insertion of degenerate oligonucleotides, encoding a specific number of random amino acids, in frame with a bacteriophag...
متن کاملComprehensive mutagenesis of the C-terminal domain of the M13 gene-3 minor coat protein: the requirements for assembly into the bacteriophage particle.
Filamentous bacteriophage assemble at the host membrane in a non-lytic process; the gene-3 minor coat protein (P3) is required for release from the membrane and subsequently, for recognition and infection of a new host. P3 contains at least three distinct domains: two N-terminal domains that mediate host recognition and infection, and a C-terminal domain (P3-C) that is required for release from...
متن کاملMechanism of translational coupling between coat protein and replicase genes of RNA bacteriophage MS2.
We have analyzed the molecular mechanism that makes translation of the MS2 replicase cistron dependent on the translation of the upstream coat cistron. Deletion mapping on cloned cDNA of the phage shows that the ribosomal binding site of the replicase cistron is masked by a long distance basepairing to an internal coat cistron region. Removal of the internal coat cistron region leads to uncoupl...
متن کاملPolyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 3 شماره
صفحات -
تاریخ انتشار 1998